

ADVANCING OUR ACADEMIC MISSION

Staff Lottery ticket purchasers help fund positions that drive research and innovation, leading to better outcomes for patients.

Advanced Practice Fellowships

A program to develop the capacity and capability to provide bispecific T-cell engager (BiTE) therapies for cancer patients

The development of a new generation of immunotherapy, called bispecific T-cell engagers (BiTE), brings immune cells called T-cells to cancer cells and activates those immune cells to kill the cancer. BiTE therapies have demonstrated clinical benefit in treating multiple types of cancer. The goal of this project is to design and implement a BiTE treatment care path which would facilitate the safe administration of these novel and exciting compounds.

Clinician Scientist

Improving detection and treatment of non-resolving inflammation and persistent pain in knee osteoarthritis

Knee osteoarthritis (OA) is a leading cause of pain and disability. This research program aims to better understand the role of inflammation and its relationship with OA symptoms in response to reducing knee joint loads, particularly in patients undergoing surgery to realign the leg. By understanding what contributes to this non-resolving inflammation, the team hopes to find better ways to reduce pain and improve quality of life for people with OA.

Clinical Fellow: Cardiac Care

Minimally invasive, robotic and transcatheter cardiac surgery

This fellowship aims to equip trainees with advanced skills in treating complex heart diseases using cutting-edge minimally invasive techniques. These procedures offer several advantages, including shorter hospital stays, faster recovery times and improved overall quality of life for patients. By immersing fellows in various stages of patient care, the program ensures a well-rounded learning experience and prepares the fellows to launch a career in minimally invasive cardiac surgery.

Clinical Fellow: Neurosurgery

Harnessing the potential of an autonomous robotic system for precision tumour resection and enhanced patient outcomes

Spinal metastasis can be difficult to diagnose and effectively treat because surgery near the spinal cord requires extreme accuracy. This research is testing an autonomous robotic system designed to help remove these tumours with enhanced precision, visualization and control, improving surgical outcomes. By implementing this autonomous robotic system, standardizing the procedure and replicating it across surgeons, the aim is to redefine spinal metastasis surgery by improving surgical accuracy and optimizing disease control.